Widening the NLP pipeline for Spoken Language Processing

Srinivas Bangalore, AT&T-Research

Outline

- Natural Language Processing Pipeline
 - Text input
 - Speech input
- Uniform decoding framework
- Case Studies
 - Call-type classification
 - Speech translation
 - Multimodal language processing

Text-based Natural Language Processing

NLP Pipeline: Beads on a String

IEEE-ACL SLT Workshop 2006

Spoken Language Processing

Widening the NLP pipeline

• Passing one-best solution is sub-optimal.

•Error in processing models

- Most modules in the pipeline are not perfect
- Error propagation down the pipeline

• Ambiguity in NLP

- "John saw a man with a telescope"
- Postpone ambiguity resolution down the pipeline
- Until information is available to resolve the ambiguity

• N-best solutions

List of solutions ranked by some goodness criteria

Weighted packed representations

- Lattices for linear outputs
- Forests for hierarchical outputs

• N-best versus Lattices/Forests

- N needs to be very large for substantially different solution
- Repeated computation is factored out
 - Significant parts are shared across n-best solutions

at&t

A word about decoders

- Specialized decoder for each task
 - Use weighted lattices as input
 - Produce weighted lattices as output
- Uniform decoding framework
 - Most NL processing steps can be encoded as token tagging tasks.
 - -... word/?? ...
 - Approximation for other steps
 - Attachment in parsing
- Weighted finite-state transducers

atat

Weighted Finite-State Transducers (WFST)

- Provide efficient ways of representing weighted ambiguous hypotheses.
- Closed under composition
 - straightforward integration of finite-state constraints.
 - allows for modular development without loss of optimality of the solution.
- Decoding: linear in the input size.
- Multi-tape finite-state automata used to represent constraints from different levels of language processing.
- Extensively used for speech and language processing.

Decoders as WFSTs

- Grammar based decoding models
 - Regular expressions (e.g. dates, telephone numbers, name lists)
 - Context-free grammars (syntactic parsers)
 - Approximation techniques (Nederhof 1997, Pereira and Wright 1997)
- HMM-based generative model
 w_i:t_i/P(w_i|t_i)

$$T^* = \operatorname{argmax} \prod_{i=1}^{n} P(w_i \mid t_i) * P(t_i \mid t_{i-1})$$

- (Schabes and Roche 1997)
- Discriminatively trained classification models

$$\mathsf{T}^* = \operatorname{argmax} \prod_{i=1}^{n} \mathsf{P}(\mathsf{t}_i \mid f(\mathsf{t}_{i-1}^1, \mathsf{w}_n^1))$$

- Decision Trees to FSTs (Sproat and Riley, 1996); Adaboost to FSTs (Bangalore, 2004)

 $t_i/P(t_i|t_{i-1})$

 $\psi_i / \mathbf{P}(\psi_i)$

t_i/P(t_i)

atet

Encode features and weights as context-dependent rewrite rules (CDR)

$$\phi \rightarrow \psi \mid \gamma - \delta$$

- Compile CDRs into FSTs (Johnson 1972, Kaplan and Kay 1994, Mohri and Sproat 1996)

Outline

- Natural Language Processing Pipeline
 - Text input
 - Speech input
- Uniform decoding framework
- Case Studies
 - Call-type classification
 - Speech translation
 - Multimodal language processing

Call-type classification

Calls are classified based on user's response to an opening prompt.

 "How may I help you" (Gorin et.al. 1997); BBN call director (Natarajan et.al. 2002); (Chelba and Acero 2003); (Cox 2003)

Training data:

I would like to speak to an operator : Request(customer_care) What is my account balance: Request(account_balance) I'd like to have a copy of my March bill: Request(copy_bill) How do I pay my bill: Ask(bill_payment)

Classification model:

$topclass = \arg \max P(class | Ngrams(input))$

ASR output is classified

- one-best, n-best, word lattice

atet

Call-type classification error rates Results from (Haffner 2005)

Top class error rate after rejecting 30% low confidence examples:

- -3 inputs: 1-best sentence, 10 best, full lattice
- trigram word features

ASR word accuracy about 70% for the three applications

Classifier	Input	App1	App2	АррЗ
		(82 classes)	(97 classes)	(64 classes)
Poly2 SVM	1-best	12.9	8.44	4.66
Poly2 SVM	10-best	11.3	7.45	4.37
Poly2 SVM	Lattice	10.2	6.68	3.37

Classification of ASR word lattices consistently outperforms classification of one-best ASR output.

Spoken Language Translation

• Two-step process (narrow pipe)

FST-based Spoken Language Translation

- Finite-state transducer based spoken language translation
 - Lexical choice and reordering are modeled using finite-state transducers
 - Vidal et al 1997, Ney 1999, Bangalore and Riccardi 2000, Zhou et al 2005, Shankar and Byrne 2005, Crego 2004.
 - T estimated from bilingual phrases/tuples, source F, decoded target E^*

 $E_{lex} = \pi_{1}(best(F \circ T))$ $E^{*} = best(permute(E_{lex}) \circ LM_{E})$

- •FST-based Eutrans II Italian-English task (Matusov, Kanthak, Ney ICASSP 2006)
 - 23.7% ASR word-error rate

Method	WER(%)	BLEU
One-best ASR output	37.4	51.3
Word-lattices ASR output	36.6	52.4
ASR+MT integrated	36.3	52.6

Multimodal Language Processing

Multimodal interfaces: allow for multiple modes of input

Pen/hand gestures, handwriting and speech

Interpretation of input

- derived by fusing information distributed in multiple input modalities
- Bolt 1980, Cohen et al 1997, Johnston and Bangalore 2000, Johnston et al 2002, Joyce 2004, Meng et al 2006

Challenges:

- Interpretation ambiguity
 - Each combination of strokes as a candidate for handwriting and gesture recognition
 - Even simple inputs can have highly ambiguous interpretations
- Speech and gesture recognition errors
- Modality Synchronization
 - Alignment between input lattices

Representation of input and output streams

Multimodal grammars

Multimodal context-free grammar

Terminals are multimodal tokens • consisting of three components:

at&t

Speech stream

(words)

Finite-state edit machines: Robust interpretation

• Transform ASR output so that it can be assigned a meaning by the FST-based Multimodal Understanding model.

- Decoding: $s^* = \arg\min_s \lambda_s \circ \lambda_{Edit} \circ \lambda_{Grammar}$
- MATCH domain concept sentence accuracy (Bangalore and Johnston 2006)

	Concept Sentence Accuracy
No Edit	38.9
One-best Edit	60.2
Lattice Edit	63.2

Edit machine (insert, substitute, delete, identity arcs).

Summary

- Widening the NLP pipeline for spoken language processing
 - Imperfect output from speech recognition and other processing components
 - Inherent ambiguity in language
 - N-best or lattice representations
- Extending decoders to cope with lattice input
 - FST as a uniform decoding framework
 - Grammar-based, HMM-based, Classification-based decoders
- Case Studies:
 - Call-type classification
 - Spoken Language Translation
 - Multimodal Language Processing
- Issues:
 - Combining weights across multiple disambiguation models
 - Search and prune during FST composition (Lazy evaluation)

