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Machine Translation

美国关岛国际机场及其办公室均接获一
名自称沙地阿拉伯富商拉登等发出的电
子邮件，威胁将会向机场等公众地方发
动生化袭击後，关岛经保持高度戒备。

The U.S. island of Guam is maintaining a high 
state of alert after the Guam airport and its offices 
both received an e-mail from someone calling 
himself the Saudi Arabian Osama bin Laden and 
threatening a biological/chemical attack against 
public places such as the airport. 



Statistical Machine Translation

Hmm, every time he sees 
“banco”, he either types 
“bank” or “bench” … but if 
he sees “banco de…”,
he always types “bank”, 
never “bench”…

Translate, translate…

Human-translated
documents



Ready-to-Use Online Bilingual Data
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Bilingual Text (200m words)
English
strings

Chinese
strings

Bilingual text

…
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…English
strings

Word
alignments

Chinese
strings

Word-Aligned bilingual text

…

Bilingual Text (200m words)



…English
strings

Word
alignments

Chinese
strings

Phrase Pair Extraction [Och & Ney, 2004]

Vast Database of Phrase Pairs

Word-Aligned bilingual text

…

Bilingual Text (200m words)



Phrase-Based Translation

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

Scoring:  Try to use phrase pairs that have been frequently observed.
Try to output a sentence with frequent English word sequences.
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Phrase-Based Translation

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

Scoring:  Try to use phrase pairs that have been frequently observed.
Try to output a sentence with frequent English word sequences.



Phrase-Based Noisy Channel

Language 
Model

Translation 
Model

Decoder

English
string

Chinese
string

Chinese
string

English
string

WFSA WFST



Features and Tuning

• English trigram language model
• Phrase pairs

– Conditional probability
– Bad-phrase spotter 
– Word-drop spotter 
– “Move Me” preference

• English output length
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WTM fixed at 1.0 plot by Emil Ettelaie

Hill-climbing
MaxBleu [Och 2003]



These Ideas Work!
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Can a machine translate between 
Chinese and English without knowing 

what a verb is?
• Of course
• But the output is frequently bad

“Frequent high-tech exports are bright spots for 
foreign trade growth of Guangdong has made 
important contributions.” 

• This phrase-based story is a little bit crazy



Syntax

Maybe we need some grammar?



MT Research Landscape

Working on syntax-based approach 
to translation (nouns, verbs, 
prepositional phrases…)
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Syntax will never work!
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It has never worked in speech recognition!
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[Koehn et al 03]
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NIST-2005 Common Evaluation of 
Machine Translation Systems

• Chinese/English
– ISI No-Syntax system: 30.7
– ISI Syntax system: 24.3
– Google system: ~35

• Higher is better (not like golf)

No syntax MT

Ad hoc syntax MT

Syntax-inspired MT

Syntax-sensitive MT

Syntax-aware MT

Syntax-augmented MT

Syntax-based MT

Syntax-directed MT

Syntax MT



Syntax Started to Work in 2006…
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NIST-2006 Common Evaluation of 
Machine Translation Systems

• Chinese/English
– ISI No-Syntax system: ~30
– ISI Syntax system: 33.9

• Similar results for BN genre
• No-syntax = Syntax for BC 

genre and for Arabic/English
• Detailed testing with ASR just 

beginning

No syntax MT

Ad hoc syntax MT

Syntax-inspired MT

Syntax-sensitive MT

Syntax-aware MT

Syntax-augmented MT

Syntax-based MT

Syntax-directed MT

Syntax MT



Phrase-Based Output

Gunman of police killed  . Decoder 
Hypothesis #1

. 击毙警方被枪手



Phrase-Based Output

Gunman of police attack  . Decoder 
Hypothesis #7

. 击毙警方被枪手



Phrase-Based Output

Gunman by police killed . Decoder 
Hypothesis #12

. 击毙警方被枪手



Phrase-Based Output

Killed gunman by police . Decoder 
Hypothesis #134

. 击毙警方被枪手



Phrase-Based Output

Gunman killed the police . Decoder 
Hypothesis #9,329

. 击毙警方被枪手



Phrase-Based Output

Gunman killed by police  .

Problematic:
• VBD “killed” needs a direct object
• VBN “killed” needs an auxiliary verb (“was”)
• countable “gunman” needs an article (“a”, “the”)
• “passive marker” in Chinese controls re-ordering

Can’t enforce/encourage any of this!

Decoder 
Hypothesis #50,654

. 击毙警方被枪手 highest scoring
output, phrase-
based model



How to Get Grammar into the 
Statistical MT Picture?

• Original work by Dekai Wu
• Yamada & Knight (2001, 2002)
• Galley, Hopkins, Marcu & Knight (2004)



The gunman killed by police  .
DT     NN     VBD IN   NN

NPB                    PP
NP-C               VP

S

Syntax-Based Output

Decoder 
Hypothesis #1

. 击毙警方被枪手



Gunman  by police shot  .
NN     IN   NN  VBD

NPB          PP
NP-C               VP

S

Syntax-Based Output

Decoder 
Hypothesis #16

. 击毙警方被枪手



The gunman was killed by police  .
DT     NN    AUX  VBN IN   NN

NPB                           PP
NP-C               VP

S

Syntax-Based Output

Decoder 
Hypothesis #1923

. 击毙警方被枪手

highest scoring
output, syntax-
based model



Syntax-Based Output

• Better modeling of target language structure
– Always a verb
– Verb is always in the right place

• Better handling of function words 
– They often don’t translate
– They control translation

• Better generalization in translation patterns



Why Target Trees Instead 
of Source Trees?

• Human translators need to know a lot more 
about the target language.

• MT system seems to know Chinese just fine.
– Any evidence to the contrary?

• But the system does not know English!
– Lots of evidence

• Speech input to MT
– We don’t have to parse source speech recognition
– We can generalize to source lattices instead of 

strings



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

cstring



These 7 people include astronauts coming from France and Russia .

estring

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

cstring



These 7 people include astronauts coming from France and Russia .

estring

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

cstring

word alignment



These 7 people include astronauts coming from France and Russia .

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

cstring

word 
alignment

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

etree

(includes estring)



Syntax-Based Noisy Channel

Language 
Model

Translation 
Model

Decoder

English
tree

Chinese
string

Chinese
string

English
tree

Tree Acceptor Tree Transducer



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Top-Down Tree-to-String Transducer



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Top-Down Tree-to-String Transducer



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

NP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

, ,

Top-Down Tree-to-String Transducer

, wa ,ga



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

,kare wa,

Top-Down Tree-to-String Transducer

, ,ga



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

kare kikuongaku owa daisuki desugano

Original input: Final output:

, , , , , , ,,

Top-Down Tree-to-String Transducer



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Top-Down Tree-to-String Transducer



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Top-Down Tree-to-String Transducer

S

x0:NP VP

x0, wa, x2, o, x1

x1:VBZ x2:NP

0.2



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

NP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

, ,

Top-Down Tree-to-String Transducer

, wa ,o



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

NP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

, ,

Top-Down Tree-to-String Transducer

, wa ,o

NP

PRO

kare

he

0.7



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

Original input: Transformation:

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

,kare wa,

Top-Down Tree-to-String Transducer

, ,o



S

NP VP

PRO

he

VBZ

enjoys

NP

VBG

listening

VP

P

to

NP

SBAR

music

kare kikuongaku owa daisuki desugano

Original input: Final output:

, , , , , , ,,

Top-Down Tree-to-String Transducer

To get total probability, 
multiply probabilities of the
individual steps.



Transducer Format is Expressive

S

x0:NP VP

x1:VB x2:NP2

x1, x0, x2

S

PRO VP

VB x0:NPthere

are

hay, x0

NP

x0:NP PP

of

P x1:NP

x1,          , x0

Multilevel Re-Ordering 

Non-constituent Phrases 

Lexicalized Re-Ordering

VP

VBZ VBG

is

está, cantando

Phrasal Translation 

singing

VP

VB x0:NP PRT

put

poner, x0

Non-contiguous Phrases 

on

NPB

DT x0:NNS

the

x0

Context-Sensitive
Word Insertion 



Phrase-Based and Syntax-Based 
Pattern Extraction

…estring
alignment
cstring

ATS [Och & Ney, 2004]

phrase pairs consistent with word alignment



Phrase-Based and Syntax-Based 
Pattern Extraction

…estring
alignment
cstring

ATS [Och & Ney, 2004]

phrase pairs consistent with word alignment

…
etree

alignment
cstring

GHKM [Galley et al 2004, 2006]

syntax transformation rules consistent with word alignment



These 7 people include astronauts coming from France and Russia .

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

GHKM
There is a unique
set of minimal
rules that explain
a given example



These 7 people include astronauts coming from France and Russia .

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

GHKM
There is a unique
set of minimal
rules that explain
a given example

DT(these) 这

NP(x0:DT, CD(7), NNS(people) x0 , 7人

VP(VBG(coming), PP(IN(from), x0:NP)) 来自 , x0



These 7 people include astronauts coming from France and Russia .

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

GHKM
There is a unique
set of minimal
rules that explain
a given example

VP(x0:VBP, x1:NP) x0 , x1



These 7 people include astronauts coming from France and Russia .

这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

GHKM
There is a unique
set of minimal
rules that explain
a given example

S(x0:NP, x1:VP, x2:PUNC) x0 , x1, x2



Sample “said that” rules

0.57 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "说" "," x0 
0.09 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "说" x0 
0.02 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "他" "说" "," x0 
0.02 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "指出" "," x0 
0.02 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> x0 
0.01 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "表示" x0 
0.01 VP(VBD("said") SBAR-C(IN("that") x0:S-C)) -> "说" "," x0 "的" 

VP

VBD SBAR-C

IN x0:S-C

that

said

?



Sample “NP-from-NP” rules

0.27 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> x1 x0 
0.15 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> "来自" x1 x0 
0.06 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> x1 "的" x0 
0.06 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> "从" x1 x0 
0.06 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> "来自" x1 "的" x0 
0.02 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> x0 "从" x1 
0.01 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> "自" x1 x0 
0.01 NP-C(x0:NPB PP(IN("from") x1:NP-C)) -> x1 x0 "," 

NP-C

x0:NPB PP

IN x1:NP-C

from

?



Sample SVO rules

CHINESE / ENGLISH

0.82 S(x0:NP-C VP(x1:VBD x2:NP-C) x3:.) -> x0 x1 x2 x3 
0.02 S(x0:NP-C VP(x1:VBD x2:NP-C) x3:.) -> x0 x1 "," x2 x3 
0.01 S(x0:NP-C VP(x1:VBD x2:NP-C) x3:.) -> x0 "," x1 x2 x3 

ARABIC / ENGLISH

0.54 S(x0:NP-C VP(x1:VBD x2:NP-C) x3:.) -> x0 x1 x2 x3 
0.44 S(x0:NP-C VP(x1:VBD x2:NP-C) x3:.) -> x1 x0 x2 x3    

S

x0:NP-C VP

x1:VBD x2:NP-C

x3:. ?



Language Models

• Syntax-based Language Model
– Assigns P(tree)  [Collins, 1997; Charniak, 2001]
– Unlike parser, must be trained on domain data
– Still unproven!

• N-gram Language Model
– Standard trigram model
– “Only judge a tree by its leaves”
– Used in current syntax-based MT systems



Decoder

• Bottom-up CKY parser
• Builds English constituents on top of 

Chinese spans
• Record of rule applications (the 

derivation) provides information to 
construct English tree

• Returns k-best trees



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
CC(and) 

和

RULE 9:
PUNC(.) 

.

Rules apply when their right-hand sides (RHS)
match some portion of the input.

“these” “Russia” “astronauts” “.”“include” “France” “and”

Syntax-Based Decoding



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
CC(and) 

和

RULE 13:
NP(x0:NNP, x1:CC, x2:NNP) 

x0 , x1 , x2

RULE 9:
PUNC(.) 

.

“France and Russia”

“include”“these” “France” “and” “Russia” “astronauts” “.”

Syntax-Based Decoding



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
CC(and) 

和

RULE 13:
NP(x0:NNP, x1:CC, x2:NNP) 

x0 , x1 , x2

RULE 9:
PUNC(.) 

.

RULE 11:
VP(VBG(coming), PP(IN(from), x0:NP)) 

来自 , x0

“France and Russia”

“coming from France and Russia”

“these” “Russia” “astronauts” “.”“include” “France” “&”

Syntax-Based Decoding



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
CC(and) 

和

RULE 13:
NP(x0:NNP, x1:CC, x2:NNP) 

x0 , x1 , x2

RULE 9:
PUNC(.) 

.

RULE 11:
VP(VBG(coming), PP(IN(from), x0:NP)) 

来自 , x0

RULE 16:
NP(x0:NP, x1:VP) 

x1 , 的 , x0

“astronauts coming from
France and Russia”

“France and Russia”

“coming from France and Russia”

“these” “Russia” “astronauts” “.”“include” “France” “&”

Syntax-Based Decoding



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
CC(and) 

和

RULE 13:
NP(x0:NNP, x1:CC, x2:NNP) 

x0 , x1 , x2

RULE 16:
NP(x0:NP, x1:VP) 

x1 , 的 , x0

RULE 9:
PUNC(.) 

.

RULE 11:
VP(VBG(coming), PP(IN(from), x0:NP)) 

来自 , x0

RULE 14:
VP(x0:VBP, x1:NP) 

x0 , x1

“include astronauts coming from
France and Russia”

“France and Russia”

“coming from France and Russia”

“astronauts coming from
France and Russia”

“these” “Russia” “astronauts” “.”“include” “France” “&”



这 7人 中包括 来自 法国 和 俄罗斯 的 宇航 员 .

RULE 1:
DT(these) 

这

RULE 2:
VBP(include) 

中包括

RULE 6:
NNP(Russia) 

俄罗斯

RULE 4:
NNP(France) 

法国

RULE 8:
NP(NNS(astronauts)) 

宇航 ,  员

RULE 5:
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These 7 people include astronauts coming from France and Russia .

DT CD VBP NNS IN NNP CC NNP PUNC

NPNP NP

VP

NP

VP

S

NNS VBG

PP

NPNP

Output English Tree



Empirical Questions

• With the acquired rules:
– Can you always reach a top S for new 

Chinese sentences?
– Does reaching a top S result in overall 

grammaticality?
– Is it only possible to reach a top S by 

changing the meaning?
– Is the overall translation accuracy good?
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Lots of Open Problems

• Specific to MT:
– Choosing syntactic categories that are appropriate 

for translation
– Decoder search errors
– More context for rule choice
– Syntax-based language models

• For of NLP and beyond:
– Modeling with tree transducers
– Algorithms for tree transducers
– Generic software toolkits for tree transducers



Tiburon: A Tree Automata Toolkit

• Developed by Jonathan May, USC/ISI
• First version distributed in April (www.isi.edu...) 

• You cast your problem in terms of tree acceptors 
and transducers

• You get implemented algorithms for free
– Kumar/Byrne’03 do this for phrase-based MT
– Pereira/Riley’96 do this for ASR

• Wealth of tree automata literature to drawn on
• Still lots of open problems in tree automata and 

in choosing formalisms for modeling NLP



Tiburon: A Tree Automata Toolkit

String transducers 
(WFST)

String acceptors 
(WFSA)

String World

Tree transducersWeighted
Transformations

Tree acceptorsWeighted
Sets

Tree World



Tiburon: A Tree Automata Toolkit

tree TT weighted tree 
acceptor

string WFST WFSAApplying transducers

WFST composition          
(Pereira & Riley, 1996)

WFSA intersection

… of weighted string acceptors            
(Mohri, 1997)

Forward-backward EM        
(Baum & Welch, 1971)

… paths through a lattice 
(Viterbi, 1967; Eppstein, 1998)

String World

Many tree transducers are not 
closed under composition!  
(Rounds, 1970; Engelfriet, 
1975; Graehl, Hopkins, Knight

Transducer composition

Tree acceptor intersection 
(despite CFG not closed)

Intersection

… of weighted tree acceptors       
(May & Knight, 2005)

Determinization …

Tree transducer EM training 
(Graehl & Knight, 2004)

EM training

… trees in a forest         
(Huang & Chiang, 2005)

N-best … 

Tree World
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Expressive power theorems in Graehl, Hopkins, Knight (submitted)
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Conclusion

• Making progress on machine translation
• Opening up field of tree automata to NLP
• Interdisciplinary Research

– Machine Learning
– Engineering
– Linguistics
– Efficient search algorithms
– Automata theory
– Grid computing



the end
beginning!


